MySQL高级篇-7-InnoDB数据存储结构
数据库的存储结构—页
索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说是存储在页结构中。另一方面,索引是在存储引擎中实现的,MySQL服务器上的存储引擎
负责对表中数据的读取和写入工作。不同存储引擎中存放的格式
一般是不同的,甚至有的存储引擎比如Memory都不用磁盘来存储数据。
磁盘与内存交互基本单位
lnnoDB将数据划分为若干个页,InnoDB中页的大小默认为16KB
以页
作为磁盘和内存之间交互的基本单位
,也就是一次最少从磁盘中读取16KB的内容到内存中,一次最少把内存中的16KB内容刷新到磁盘中
数据库管理存储空间的基本单位是页
,数据库IO操作的最小单位是页。一个页中可以存储多个行记录。在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载。
记录是按照行来存储的,但是数据库的读取并不以行为单位,否则一次读取(即一次IO操作)只能处理一行数据,效率比较低
页结构概述
页a、页b、页c..页n这些页可以不在物理结构上相连
,只要通过双向链表
相关联即可。每个数据页中的记录会按照主键值从小到大的顺序组成一个单向链表
,每个数据页都会为存储在它里边的记录生成一个页目录
,在通过主键查找某条记录的时候可以在页目录中使用二分法
快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录。
页的大小
不同的数据库管理系统的页大小不同。比如在MysQL的 InnoDB存储引擎中,默认页的大小是16KB
,
我们可以通过下面的命令来进行查看
1 | show variables like '%innodb_page_size%'; |
SQL Server中页的大小为8KB
,而在Oracle中我们用术语块
(Block)来代表”页”,Oralce支持的块大小2KB,4KB,8KB,16KB,32KB和64KB。
页的上层结构
另外在数据库中,还存在着区(Extent)、段(Segment)和表空间((Tablespace)的概念。行、页、区、段、表空间的关系如下图所示:
- 区(Extent)是比页大一级的存储结构,在InnoDB存储引擎中,一个区会分配
64个连续的页
。因为InnoDB中的页大小默认是16KB,所以一个区的大小是64*16KB=1MB
。 - 段(Segment)由一个或多个区组成,区在文件系统是一个连续分配的空间(在InnoDB中是连续的64个页),不过在段中不要求区与区之间是相邻的。段是数据库中的分配单位,不同类型的数据库对象以不同的段形式存在。当创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。
- 表空间〈Tablespace)是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以划分为系统表空间、用户表空间、撤销表空间、临时表空间等
页的内部结构
页如果按类型划分的话,常见的有数据页(保存B+树节点)、系统页、Undo页和事务数据页等。数据页是我们最常使用的页。
数据页的16KB
大小的存储空间被划分为七个部分,分别是文件头(File Header)、页头(Page Header)、最大最小记录(Infimum+supremum)、用户记录(User Records)、空闲空间(Free Space)、页目录(Page
Directory)和文件尾(File Tailer)
页结构的示意图如下所示:
第一部分
FileHeader(文件头部)
描述各种页的通用信息(页编号、上下页等),占用38B
FILE_PAGE_OFFSET(4B)
每一个页都有一个单独的页号,InnoDB通过页号可以唯一定位一个页
FILE_PAGE_TYPE(2B)
代表当前页的类型
FIL_PAGE_PREV(4B)和FIL_PAGE_NEXT(4B)
InnoDB都是以页为单位存放数据的,如果数据分散到多个不连续的页中存储的话需要把这些页关联起来,FIL_PAGE_PREV
和FIL_PAGE_NEXT
就分别代表本页的上一个和下一个页的页号。这样通过建立一个双向链表把许许多多的页就都串联起来,保证这些页之间不需要是物理上的连续,而是逻辑上的连续。
FIL_PAGE_SPACE_OR_CHKSUM(4B)
代表当前页面的校验和(checksum)
WHAT 校验和
对于一个很长的字节串来说会通过某种算法来计算一个比较短的值来代表这个很长的字节串,这个比较短的值就称为校验和。
在比较两个很长的字节串之前,先比较这两个长字节串的校验和,如果校验和都不一样,则两个长字节串肯定是不同的,所以省去了直接比较两个比较长的字节串的时间损耗。
WHY 校验和
InnoDB存储引擎以页为单位把数据加载到内存中处理,如果该页中的数据在内存中被修改了,那么在修改后的某个时间需要把数据同步到磁盘中。但是在同步一半时断电造成了该页传输的不完整。
为检测一个页是否完整,这时可以通过文件尾的校验和与文件头的校验和做比对,如果两个值不相等则证明页的传输有问题,需要重新进行传输,否则认为页的传输已经完成。
每当一个页面在内存中修改,在同步之前就要把它的校验和算出来,因为File Header在页面的前边,所以校验和会被首先同步到磁盘,当完全写完时,校验和也会被写到页的尾部。如果完全同步成功,则页的首部和尾部的校验和应该是一致的。如果写了一半儿断电了,那么在File Header中的校验和就代表着已经修改过的页,而在FileTrailer中的校验和代表着原先的页,二者不同则意味着同步中间出了错。这里,校验方式就是采用 Hash 算法进行校验
FIL_PAGE_LSN(8B)
页面被最后修改时对应的日志序列位置(Log Sequence Number)
FileTailer(文件尾部)
前4个字节代表的校验和:与FileHeader中的校验和相对应
后4个字节代表页面被最后修改时对应的日志序列位置(LSN):校验页的完整性,如果首部和尾部的LSN的校验值不成功说明同步过程出现问题
第二部分
第二部分是记录部分,页的主要作用是存储记录,因此“最大最小记录”和“用户记录”部分占了页结构的主要空间
FreeSpace(空闲空间)
存储的记录会按照指定的行格式存储到User Records部分。但是在一开始生成页的时候,其实并没有User Records这个部分,每当插入一条记录,都会从FreeSpace部分,也就是尚未使用的存储空间中中请一个记录大小的空间划分到User Records部分,当Free Space部分的空间全部被User Records部分替代掉之后,也就意味着这个页使用完,如果还有新的记录插入的话,就需要去申请新的页。
User Records(用户记录)
User Records中的这些记录按照指定的行格式一条一条放在User Records部分,相互之间形成单链表
Infimum + Supremum(最小最大记录)
记录可以比大小,对于一条完整的记录来说,比较记录的大小就是比较主键的大小。
InnoDB规定的最小记录与最大记录这两条记录的构造十分简单,都是由5字节大小的记录头信息和8字节大小的一个固定的部分组成的,
这两条记录不是自己定义的记录,所以它们并不存放在页的User Records部分,他们被单独放在一个称为Infimum + Supremum的部分:
第三部分
Page Directory(页目录)
在页中记录是以单向链表
的形式进行存储的。单向链表的特点就是插入、删除非常方便,但是检索效率不高,最差的情况下需要遍历链表上的所有节点才能完成检索。因此在页结构中专门设计了页目录这个模块,专门给记录做一个目录
,通过二分查找法
的方式进行检索,提升效率。
需求:根据主键值查找页中的某条记录,如何实现快速查找
1 | SELECT *FROM page_demo WHERE c1 = 3; |
顺序查找
从Infimum记录(最小记录)开始,沿着链表一直往后找,总会找到(或者找不到)
使用页目录,二分法查找
- 将所有的记录分成几个组,这些记录包括最小记录和最大记录,但不包括标记为“已删除”的记录。
- 第1组,也就是最小记录所在的分组只有1个记录;最后一组,就是最大记录所在的分组,会有1-8条记录;其余的组记录数量在4-8条之间。除了第1组(最小记录所在组)以外,其余组的记录数会尽量平分
- 在每个组中最后一条记录的头信息中会存储该组一共有多少条记录作为n_owned字段。
- 页目录用来存储每组最后一条记录的地址偏移量,这些地址偏移量会按照先后顺序存储起来,每组的地址偏移量也被称之为槽(slot),每个槽相当于指针指向了不同组的最后
栗子1
栗子2
现在的page_demo表中正常的记录共有6条,InnoDB会把它们分成两组,第一组中只有一个最小记录,第二组中是剩余的5条记录。
- 现在页目录部分中有两个槽,记录被分成两组,槽1中的值是112,代表最大记录的地址偏移量(就是从页面的0字节开始数,数112个字节);槽0中的值是99,代表最小记录的地址偏移量。
- 注意最小和最大记录的头信息中的n_owned属性
- 最小记录的n_owned值为1,这就代表着以最小记录结尾的这个分组中只有1条记录,也就是最小记录本身
- 最大记录的n_owned值为5,这就代表着以最大记录结尾的这个分组中只有5条记录,包括最大记录本身还有我们自己插入的4条记录
用箭头指向的方式替代数字,这样更易于我们理解修改后如下:
从逻辑上看记录和页目录的关系
确定页目录的个数
最小记录的n_owned值为1,而最大记录的n_owned值为5
InnoDB规定:对于最小记录所在的分组只能有1
条记录,最大记录所在的分组拥有的记录条数只能在1~8
条之间,剩下的分组中记录的条数范围只能在是4~8
条之间。
分组是按照下边的步骤进行的:
- 初始情况下一个数据页里只有最小记录和最大记录两条记录,它们分属于两个分组
- 之后每插入一条记录,都会从页目录中找到主键值比本记录的主键值大并且差值最小的槽,然后把该槽对应的记录的n_owned值加1,表示本组内又添加了一条记录,直到该组中的记录数等于8个
- 在一个组中的记录数等于8个后再插入一条记录时,会将组中的记录拆分成两个组,一个组中4条记录,另一个5条记录。这个过程会在页目录中新增一个槽来记录这个新增分组中最大的那条记录的偏移量。
快速查找页目录结构下的记录
1 | INSERT INTO page_demo |
添加12条记录,现在页里一共有18条记录(包括最小和最大记录),这些记录被成了5个组
只保留了16条记录的记录头信息中的n_owned和next_record属性,省略了各个记录之间的箭头
各个槽代表的记录的主键值都是从小到大排序的,使用二分法来进行快速查找。5个槽的编号分别是:0、1、2、3、4,所以初始情况下最低的槽就是low=0,最高的槽就是high=4。
找主键值为6的记录,过程如下:
- 计算中间槽的位置:(0+4)/2=2,所以查看槽2对应记录的主键值为8,又因为8 >6,所以设置high=2,low保持不变
- 重新计算中间槽的位置:(0+2)/2=1,所以查看槽1对应的主键值为4,又因为4<6,所以设置low=1,high保持不变
- 3因为high - low的值为1,所以确定主键值为6的记录在槽2对应的组中。此刻我们需要找到槽2中主键值最小的那条记录,然后沿着单向链表遍历槽2中的记录
每个槽对应的记录都是该组中主键值最大的记录,这里槽2对应的记录是主键值为8的记录,怎么定位一个组中最小的记录呢?
各个槽都是挨着的,可以很轻易的拿到槽1对应的记录(主键值为4),该条记录的下一条记录就是槽2中主键值最小的记录,该记录的主键值为5。可以从这条主键值为5的记录出发,遍历槽2中的各条记录,直到找到主键值为6的那条记录即可。
小结
在一个数据页中查找指定主键值的记录的过程分为两步:
- 通过二分法确定该记录所在的槽,并找到该槽所在分组中主键值最小的那条记录
- 通过记录的next_record属性遍历该槽所在的组中的各个记录
Page Header(页面头部)
为了能得到一个数据页中存储的记录的状态信息,比如本页中已经存储了多少条记录,第一条记录的地址是什么,页目录中存储了多少个槽等等,特意在页中定义了一个叫PageHeader的部分(56个字节),专门存储各种状态信息。
PAGE_DIRECTION
假如新插入的一条记录的主键值比上一条记录的主键值大,我们说这条记录的插入方向是右边,反之则是左边。用来表示最后一条记录插入方向的状态就是PAGE_DIRlCTION.
PAGE_N_DIRECTION
假设连续几次插入新记录的方向都是一致的,InnoDB会把沿着同一个方向插入记录的条数记下来。这个条数就用PAGE_N_DIRECTION这个状态表示。如果最后一条记录的插入方向改变了的话,这个状态的值会被清零重新统计。
从数据页角度分析B+树如何查询
一棵B+树按照节点类型可以分成两部分:
- 叶子节点,B+树最底层的节点,节点的高度为o,存储行记录。
- 非叶子节点,节点的高度大于0,存储索引键和页面指针,并不存储行记录本身。
B+树是如何进行记录检索的?
如果通过B+树的索引查询行记录,首先是从B+树的根开始,逐层检索,直到找到叶子节点,也就是找到对应的数据页为止,将数据页加载到内存中,页目录中的槽(slot)采用二分查找
的方式先找到一个粗略的记录分组,然后再在分组中通过链表遍历
的方式查找记录
普通索引和唯一索引在查询效率上有什么不同
唯一索引就是在普通索引上增加了约束性,也就是关键字唯一,找到了关键字就停止检索。
而普通索引,可能会存在用户记录中的关键字相同的情况,根据页结构的原理,当读取一条记录时,不是单独将这条记录从磁盘中读出去,而是将这个记录所在的页加载到内存中进行读取。
InnoDB存储引擎的页大小为16KB,在一个页中可能存储着上千个记录,因此在普通索引的字段上进行查找也就是在内存中多几次“判断下一条记录”的操作,对于CPU来说,这些操作所消耗的时间是可以忽略不计的。
所以对一个索引字段进行检索,采用普通索引还是唯一索引在检索效率上基本上没有差别。
InnoDB 行格式(记录格式)
指定行格式的语法
在创建或修改表的语句中指定行格式:
1 | CREATE TABLE 表名(列的消息) ROW_FORMAT=行格式名称 |
1 | CREATE TABLE record_test_table ( |
COMPACT 行格式
在MySQL 5.1版本中默认设置为Compact行格式。一条完整的记录其实可以被分为记录的额外信息和记录的真L数据两大部分。
变长字段长度列表
MySQL支持一些变长的数据类型,比如VARCHAR(M)、VARBINARY(M)、TEXT类型,BLOB类型,这些数据类型修饰列称为变长字段,变长字段中存储多少字节的数据不是固定的,所以我们在存储真实数据的时候需要顺便把这些数据占用的字节数也存起来。
在Compact行格式中,把所有变长字段的真实数据占用的字节长度都存放在记录的开头部位,从而形成一个变长字段长度列表。
注意:这里面存储的变长长度和字段顺序是反过来的。比如两个varchar字段在表结构的顺序是a(10),b(15)。那么在变长字段长度列表中存储的长度顺序就是15,10
以record_test_table表中的第一条记录举例:因为record_test_table表的col1、col2、col4列都是VARCHAR(8)类型的,所以这三个列的值的长度都需要保存在记录开头处,注意record_test_table表中的各个列都使用的是ascii字符集(每个字符只需要1个字节来进行编码)。
又因为这些长度值需要按照列的逆序存放,所以最后变长字段长度列表的字节串用十六进制表示的效果就是 $06\ 04\ 08$
把这个字节串组成的变长字段长度列表填入上边的示意图中
NULL值列表
Compact行格式会把可以为NULL的列统一管理起来,存在一个标记为NULL值列表中。如果表中没有允许存储NULL的列,则NULL值列表也不存在了。
存储NULL是因为数据都是需要对齐的,如果没有标注出来NULL值的位置,就有可能在查询数据的时候出现混乱。如果使用一个特定的符号放到相应的数据位表示空置的话,虽然能达到效果,但是这样很浪费空间,所以直接就在行数据得头部开辟出一块空间专门用来记录该行数据哪些是非空数据,哪些是空数据,格式如下:
- 二进制位的值为1时,代表该列的值为NULL。
- 二进制位的值为0时,代表该列的值不为NULL
字段a、b、c,其中a是主键,在某一行中存储的数依次是a=1、b=null、c=2。那么Compact行格式中的NULL值列表中存储:01。
第一个0表示c不为null,第二个1表示b是null。这里之所以没有a是因为数据库会自动跳过主键,因为主键肯定是非NULL且唯一的,在NULL值列表的数据中就会自动跳过主键。
record_test__table的两条记录的NULL值列表如下:
记录头信息(5B)
1 | CREATE TABLE page_demo ( |
1 | INSERT INTO page_demo |
delete_mask
这个属性标记着当前记录是否被删除,占用1个二进制位
- 值为0:代表记录并没有被删除
- 值为1:代表记录被删除掉
被删除的记录为什么还在页中存储呢?
这些被删除的记录之所以不立即从磁盘上移除,是因为移除它们之后其他的记录在磁盘上需要重新排列,导致性能消耗。所有被删除掉的记录都会组成一个所谓的垃圾链表,在这个链表中的记录占用的空间称之为可重用空间,之后如果有新记录插入到表中的话,可能把这些被删除的记录占用的存储空间覆盖掉。
min_rec_mask
B+树的每层非叶子节点中的最小记录都会添加该标记,min_rec_mask值为1。
插入的四条记录的min_rec_mask值都是0,意味着它们都不是B+树的非叶子节点中的最小记录。
record_type
这个属性表示当前记录的类型,一共有4种类型的记录
- 0:表示普通记录
- 1:表示B+树非叶节点记录
- 2:表示最小记录
- 3:表示最大记录
heap_no
这个属性表示当前记录在本页中的位置。
从图中可以看出插入的4条记录在本页中的位置分别是:2、3、4、5。
怎么不见heap_no值为0和1的记录呢?
MySQL会自动给每个页里加了两个记录,由于这两个记录并不是我们插入的,所以有时也称伪记录或者虚拟记录。这两个伪记录一个代表最小记录,一个代表最大记录。最小记录和最大记录的heap_no值分别是O和1,也就是说它们的位置最靠前。
n_owned
页目录中每个组中最后一条记录的头信息中会存储该组一共有多少条记录,作为n_owned字段。
next_record
它表示从当前记录的真实数据到下一条记录的真实数据的地址偏移量。
比如:第一条记录的next_record值为32,意味着从第一条记录的真实数据的地址处向后找32个字节便是下一条记录的真实数据。
注意:下一条记录指得并不是按照我们插入顺序的下一条记录,而是按照主键值由小到大的顺序的下一条记录。
而且规定Infimum记录(也就是最小记录)的下一条记录就是本页中主键值最小的用户记录,而本页中主键值最大的用户记录的下一条记录就是Supremum记录(也就是最大记录)。下图用箭头代替偏移量表示next_record。
演示删除操作:从表中删除一条记录,该链表也会随之变化
1 | DELETE FROM page_demo |
从图看出第2条记录前后变换:
- 第2条记录并没有从存储空间中移除,而是把该条记录的delete_mask值设置为1
- 第2条记录的next_record值变为了0,意味着该记录没有下一条记录
- 第1条记录的next_record指向了第3条记录
- 最大记录的n_owned值从5变成了4
不论怎么对页中的记录做增删改操作,InnoDB始终会维护一条记录的单链表,链表中的各个节点是按照主键值由小到大的顺序连接起来的
演示添加操作:
主键值为2的记录被删掉了,但是存储空间却没有回收,如果再次把这条记录插入到表中,会发生什么事呢?
1 | INSERT INTO page_demo VALUES (2, 200 'tong'); |
直接复用了原来被删除记录的存储空间。|
当数据页中存在多条被删除掉的记录时,这些记录的next_record属性将会把这些被删除掉的记录组成一个垃圾链表,以备之后重用这部分存储空间。
记录的真实数据
记录的真实数据除了我们自己定义的列的数据以外,还会有三个隐藏列:
实际上这几个列的真正名称其实是:DB_RoW_ID、DB_TRX_ID、DB_ROLL_PTR。一个表没有手动定义主键,则会选取一个Unique键作为主键,如果连Unique键都没有定义的话,则会为表默认添加一个名为row_id的隐藏列作为主键。所以row_id是在没有自定义主键以及Unique键的情况下才会存在的。
Dynamic和Compressed行格式
行溢出
InnoDB存储引擎可以将一条记录中的某些数据存储在真正的数据页面之外。
一个页的大小一般是16KB,也就是16384字节,而一个VARCHAR(M)类型的列就最多可以存储65533个字节,这样就可能出现一个页存放不了一条记录,这种现象称为行溢出。
在Compact和Reduntant行格式中,对于占用存储空间非常大的列,在记录的真实数据处只会存储该列的一部分数据,把剩余的数据分散存储在几个其他的页中进行分页存储,然后记录的真实数据处用20个字节存储指向这些页的地址(当然这20个字节中还包括这些分散在其他页面中的数据的占用的字节数),从而可以找到剩余数据所在的页,称页扩展。
Dynamic和Compressed行格式
Compressed和Dynamic两种记录格式对于存放在BLOB中的数据采用了完全的行溢出的方式。如图,在数据页中只存放20个字节的指针(溢出页的地址),实际的数据都存放在Off Page(溢出页)中
Compact和Redundant两种格式会在记录的真实数据处存储一部分数据(存放768个前缀字节)。
Compressed行记录格式的另一个功能就是,存储在其中的行数据会以zlib的算法进行压缩,因此对于BLOB、TEXT、VARCHAR这类大长度类型的数据能够进行非常有效的存储
Redundant行格式(比较老)
Redundant是MysQL 5.0版本之前InnoDB的行记录存储方式,MySQL 5.0支持Redundant是为了兼容之前版本的页格式。
从上图可以看到,不同于Compact行记录格式,Redundant行格式的首部是一个字段长度偏移列表,同样是按照列的顺序逆序放置的。
字段长度偏移列表
注意Compact行格式的开头是变长字段长度列表,而Redundant行格式的开头是字段长度偏移列表,与变长字段长度列表有两处不同:
- 少了“变长”:Redundant行格式会把该条记录中所有列(包括隐藏列)的长度信息都按照逆序存储到字段长度偏移列表
- 多了“偏移”:这意味着计算列值长度的方式不像Compact行格式那么直观,它是采用两个相邻数值的差值来计算各个列值的长度
记录头信息
不同于Compact行格式,Redundant行格式中的记录头信息固定占用6个字节(48位),每位的含义见下表。
与Compact行格式的记录头信息对比来看,有两处不同:
- Redundant行格式多了n_field和1byte_offs_flag这两个属性
- Redundant行格式没有record _type这个属性
区、段、碎片区
区
B+树
的每一层中的页都会形成一个双向链表
,如果是以页为单位来分配存储空间的话,双向链表相邻的两个页之间的物理位置可能离得非常远。范围查询只需要定位到最左边的记录和最右边的记录,然后沿着双向链表一直扫描就可以,而如果链表中相邻的两个页物理位置离得非常远,就是所谓的随机IO。
一个区就是在物理位置上连续的64个页
。因为InnoDB 中的页大小默认是16KB,所以一个区的大小是64*16KB=1NB。
在表中数据量大的时候,为某个索引分配空间的时候就不再按照页为单位分配,而是按照区为单位分配,甚至在表中的数据特别多的时候,可以一次性分配多个连续的区。虽然可能造成一点点空间的浪费(数据不足以填充满整个区),但是从性能角度看,可以消除很多的随机IO
段
对于范围查询,其实是对B+树叶子节点中的记录进行顺序扫描,而如果不区分叶子节点和非叶子节点,统统把节点代表的页面放到申请到的区中的话,进行范围扫描的效果就大打折扣。
InnoDB对B+树的叶子节点
和非叶子节点
进行了区别对待,存放叶子节点的区的集合就算是一个段
(segment),存放非叶子节点的区的集合也算是一个段
。一个索引会生成2个段,一个叶子节点段,一个非叶子节点段。
除了索引的叶子节点段和非叶子节点段之外,InnoDB中还有为存储一些特殊的数据而定义的段,比如回滚段。所以,常见的段有数据段、索引段、回滚段。数据段即为B+树的叶子节点,索引段即为B+树的非叶子节点。
在InnoDB存储引擎中,对段的管理都是由引擎自身所完成,DBA不能也没有必要对其进行控制。这从一定程度上简化了DBA对于段的管理。
段其实不对应表空间中某一个连续的物理区域,而是一个逻辑上的概念,由若干个零散的页面以及一些完整的区组成。
碎片区
为了考虑以完整的区为单位分配给某个段对于数据量较小
的表太浪费存储空间的这种情况,InnoDB提出了一个碎片(fragment)区
的概念。
在一个碎片区中,并不是所有的页都是为了存储同一个段的数据而存在的,而是碎片区中的页可以用于不同的目的,比如有些页用于段A,有些页用于段B,有些页甚至哪个段都不属于。碎片区直属于表空间,并不属于任何一个段。
所以此后为某个段分配存储空间的策略是这样的:
- 在刚开始向表中插入数据的时候,段是从某个碎片区以单个页面为单位来分配存储空间的
- 当某个段已经占用了
32个碎片区
页面之后,就会申请以完整的区为单位来分配存储空间
区的分类
类别 | 说明 |
---|---|
空闲的区(FREE) | 现在还没有用到这个区中的任何页面。 |
有剩余空间的碎片区(FREE_FRAG) | 表示碎片区中还有可用的页面。 |
没有剩余空间的碎片区(FULL_FRAG) | 表示碎片区中的所有页面都被使用,没有空闲页面。 |
附属于某个段的区(FSEG) | 每一个索引都可以分为叶子节点段和非叶子节点段。 |
处于FREE、FREE_FRAG以及 FULL_FRAG这三种状态的区都是独立的,直属于表空间。而处于FSEG状态的区是附属于某个段的。
表空间
表空间可以看做是InnoDB存储引擎逻辑结构的最高层,所有的数据都存放在表空间中。
表空间是一个逻辑容器
,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。表空间数据库由一个或多个表空间组成,表空间从管理上可以划分为系统表空间
(System
tablespace)、独立表空间
(File-per-table tablespace)、撤销表空间
(Undo Tablespace)和临时表空间
(Temporary Tablespace)等
独立表空间
每张表有一个独立的表空间,也就是数据和索引信息都会保存在自己的表空间中。独立的表空间(即:单表)可以在不同的数据库之间进行迁移。
空间可以回收(DROP TABLE操作可自动回收表空间;其他情况,表空间不能自己回收)。如果对于统计分析或是日志表,删除大量数据后可以通过:alter table TableName engine=innodb;
回收不用的空间。对于使用独立表空间的表,不管怎么删除,表空间的碎片不会太严重的影响性能,而且还有机会处理。
系统表空间
系统表空间的结构和独立表空间基本类似,只不过由于整个MysQL进程只有一个系统表空间,在系统表空间中会额外记录一些有关整个系统信息的页面,这部分是独立表空间中没有的。